Machine Learning Forecast

Get the predition results of the deployed machine learning algorithm model.

Request Format

POST https://{apigw-address}/ml-service/v1.0/forecasts?action=run&orgId={}&serviceId={}

Request Parameters (URI)

Name

Location (Path/Query)

Required or Not

Data Type

Description

orgId

Query

true

String

Organization ID which the user belongs to. How to get orgId >>

serviceId

Query

true

String

Service ID that is generated after deploying the algorithm model. How to get serviceId >>

Request Parameters (Body)

Name

Required or Not

Data Type

Description

parameters

true

String

Business parameters for the algorithm model in JSON format. The parameters and values must match with the requirement of the model.

Response Parameters

Name

Data Type

Description

data

Object(String)

Returned prediction results in JSON format. Data type of the results can be basic data types, complex types, and array.

Sample 1

Request Sample

url: https://{apigw-address}/ml-service/v1.0/forecasts?action=run&orgId=o15475450989191&serviceId=f40fbb09-ce20-463f-bb18

method: POST

requestBody:
{
    "parameters":{
"ColumnNames": [
        "age",
        "workclass",
        "fnlwgt",
        "education",
        "education-num",
        "marital-status",
        "occupation",
        "relationship",
        "race",
        "sex",
        "capital-gain",
        "capital-loss",
        "hours-per-week",
        "native-country"
      ],
      "Values": [
        [
          "0",
          "value",
          "0",
          "value",
          "0",
          "value",
          "value",
          "value",
          "value",
          "value",
          "0",
          "0",
          "0",
          "value"
        ],
        [
          "0",
          "value",
          "0",
          "value",
          "0",
          "value",
          "value",
          "value",
          "value",
          "value",
          "0",
          "0",
          "0",
          "value"
        ]
      ]
 }
}

Return Sample

{
  "status": 0,
  "msg": "Success",
  "data": {
        "ColumnNames": [
          "Scored Labels",
          "Scored Probabilities"
        ],
        "ColumnTypes": [
          "String",
          "Numeric"
        ],
        "Values": [
          [
            "value",
            "0"
          ],
          [
            "value",
            "0"
          ]
        ]
  }
}